Abstract

Regularized linear models are important classification methods for high dimensional problems, where regularized linear classifiers are often preferred due to their ability to avoid overfitting. The degree of freedom of the model dis determined by a regularization parameter, which is typically selected using counting based approaches, such as K-fold cross-validation. For large data, this can be very time consuming, and, for small sample sizes, the accuracy of the model selection is limited by the large variance of CV error estimates. In this paper, we study the applicability of a recently proposed Bayesian error estimator for the selection of the best model along the regularization path. We also propose an extension of the estimator that allows model selection in multiclass cases and study its efficiency with L1 regularized logistic regression and L2 regularized linear support vector machine. The model selection by the new Bayesian error estimator is experimentally shown to improve the classification accuracy, especially in small sample-size situations, and is able to avoid the excess variability inherent to traditional cross-validation approaches. Moreover, the method has significantly smaller computational complexity than cross-validation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.