Abstract
In the problem of generalized zero-shot learning, the datapoints from unknown classes are not available during training. The main challenge for generalized zero-shot learning is the unbalanced data distribution which makes it hard for the classifier to distinguish if a given testing sample comes from a seen or unseen class. However, using Generative Adversarial Network (GAN) to generate auxiliary datapoints by the semantic embeddings of unseen classes alleviates the above problem. Current approaches combine the auxiliary datapoints and original training data to train the generalized zero-shot learning model and obtain state-of-the-art results. Inspired by such models, we propose to feed the generated data via a model selection mechanism. Specifically, we leverage two sources of datapoints (observed and auxiliary) to train some classifier to recognize which test datapoints come from seen and which from unseen classes. This way, generalized zero-shot learning can be divided into two disjoint classification tasks, thus reducing the negative influence of the unbalanced data distribution. Our evaluations on four publicly available datasets for generalized zero-shot learning show that our model obtains state-of-the-art results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.