Abstract
Cancer is one of the most fatal diseases in the world. Governments and researchers from various areas have continuously concentrated efforts to better understand the disease and propose diagnostic and treatment techniques. The use of mathematical models of tumor growth is of great importance for the development of such techniques. Due to the variety of models nowadays available in the literature, the problems of model selection and parameter estimation come into picture, aiming at suitably predicting the patient’s status of the disease. As the available data on dependent variables of existing models might not justify the use of common likelihood functions, approximate Bayesian computation (ABC) becomes a very attractive tool for model selection and model calibration (parameter estimation) in tumor growth models. In the present study, a Monte Carlo approximate Bayesian computation (ABC) algorithm is applied to select among competing models of tumor growth, with and without chemotherapy treatment. Simulated measurements are used in this work. The results obtained show that the algorithm correctly selects the model and estimates the parameters used to generate the simulated measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.