Abstract

Incubation of N-acetyltyrosine methyl ester with cuticular enzymes, isolated from the wandering stages of Calliphora sp larvae, resulted in the generation of N-acetyldopa methyl ester when the reaction was carried out in the presence of ascorbate which prevented further oxidation of the o-diphenolic product. Enzymatic oxidation of N-acetyldopa methyl ester ultimately generated dehydro N-acetyldopa methyl ester. The identity of enzymatically produced N-acetyldopa methyl ester and dehydro N-acetyldopa methyl ester has been confirmed by comparison of the ultraviolet and infrared spectral and chromatographic properties with those of authentic samples as well as by nuclear magnetic resonance studies. Since N-acetyldopaquinone methyl ester was also converted to dehydro N-acetyldopa methyl ester and tyrosinase was responsible for the oxidation of N-acetyldopa methyl ester, a scheme for the cuticular phenoloxidase catalyzed conversion of N-acetyltyrosine methyl ester to dehydro N-acetyldopa methyl ester involving the intermediary formation of the quinone and the quinone methide is proposed to account for the observed results. The conversion of N-acetyldopa methyl ester to dehydro derivative remarkably resembles the conversion of the sclerotizing precursor, N-acetyldopamine, to dehydro-N-acetyldopamine observed in the insect cuticle. Based on these comparative studies, it is proposed that peptidyl dopa derivatives could also serve as the sclerotizing precursors for the sclerotization of the insect cuticle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.