Abstract

Model uncertainty and saturation in actuators are among some of the practical challenges in the controller design of autonomous vehicles. Incorporating adaptive control with anti-windup (AW) compensators can provide a convenient combination to counteract the challenge. In this manuscript, an adaptive control with a dynamic anti-windup compensator is proposed for an Autonomous Underwater Vehicle (AUV). Due to industrial and academic interests, the proposed method is embedded with a Proportional–Derivative–Integral (PID) controller. A modern AW technique is employed to cope with the saturation problem. Typical performance of the adaptive control system is achieved in the absence of actuator saturation. The performance is shown to degrade when the saturation has occurred. However the quality of the adaptive controller is improved when it is combined with an anti-windup compensator. Primarily six degrees of freedom (DOF) nonlinear motion equations of the vehicle are derived. Then, the proposed scheme is applied to this nonlinear model. Performance of the modified system is compared by the baseline controller. The effectiveness of the presented method in the presence of the actuator saturation, considering uncertainties, noise and disturbance is assessed and verified through simulation scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.