Abstract

During the ultraprecise cutting of micro-structure surface with fast tool servo (FTS), the hysteresis of piezoelectric actuators (PEAs) are affected by dynamic voltage excitations and real-time cutting force, which declines the servo accuracy and cutting performance. In this paper, for a multi-input-single-output (MISO) cutting system, a cross-coupling rate-dependent Prandtl-Ishlinskii (CRPI) model is proposed and identified for the dynamic hysteresis of PEAs under dynamic voltage excitation and external loads. A model reference adaptive control method is then presented to eliminate the positioning nonlinearity of PEAs. The hysteresis modeling accuracy is discussed and the adaptive controller is validated through experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.