Abstract
We study stochastic population dynamics coupled to fast external environments and combine expansions in the inverse switching rate of the environment and a Kramers-Moyal expansion in the inverse size of the population. This leads to a series of approximation schemes, capturing both intrinsic and environmental noise. These methods provide a means of efficient simulation and we show how they can be used to obtain analytical results for the fluctuations of population dynamics in switching environments. We place the approximations in relation to existing work on piecewise-deterministic and piecewise-diffusive Markov processes. Finally, we demonstrate the accuracy and efficiency of these model-reduction methods in different research fields, including systems in biology and a model of crack propagation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.