Abstract
Model predictive control (MPC) is an advanced real-time control technique that uses an internal model to predict the future system behavior and generates optimal control actions by solving an optimization problem. MPC has been more and more applied for controlling open water systems, especially open water channels. Most of the research however focuses on water quantity (water level) control. Since water quality management is recently attracting more attention, extending MPC on combined water quantity and quality management is a logical next step.In this paper, we study the application of complex models in MPC to control both water quantity and quality. However, because of the online optimization of MPC, the computational time becomes an issue. In order to reduce the computational time, a model reduction technique, Proper Orthogonal Decomposition (POD), is applied to reduce the model order. The method is tested on a Polder flushing case. The results show that POD can significantly reduce the model order for both water quantity and quality with high accuracy. The MPC using the reduced model performs well in controlling combined water quantity and quality in open water channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.