Abstract
Simulated moving bed (SMB) chromatography is a well‐established technology for separating chemical compounds. To describe an SMB process, a finite‐dimensional multistage model arising from the discretization of partial differential equations is typically employed. However, its relatively high dimension poses severe computational challenges to various model‐based analysis. To overcome this challenge, two Krylov‐type model order reduction (MOR) methods are proposed to accelerate the computation of the cyclic steady states (CSSs) of SMB processes with linear isotherms. A “straightforward method” that carefully deals with the switching behavior in MOR is first proposed. Its improvement, a “subspace‐exploiting method,” thoroughly exploits each reduced model to achieve further acceleration. Simulation studies show that both methods achieve high accuracy and significant speedups. The subspace‐exploiting method turns out to be computationally much more efficient. Two challenging analyses of SMB processes, namely uncertainty quantification and CSS optimization, further demonstrate the accuracy, efficiency, and applicability of the proposed methods. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3773–3783, 2014
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.