Abstract
This paper investigates the problem of model reduction for a class of continuous-time Markovian jump linear systems with incomplete statistics of mode information, which simultaneously considers the exactly known, partially unknown and uncertain transition rates. By fully utilising the properties of transition rate matrices, together with the convexification of uncertain domains, a new sufficient condition for performance analysis is first derived, and then two approaches, namely, the convex linearisation approach and the iterative approach, are developed to solve the model reduction problem. It is shown that the desired reduced-order models can be obtained by solving a set of strict linear matrix inequalities (LMIs) or a sequential minimisation problem subject to LMI constraints, which are numerically efficient with commercially available software. Finally, an illustrative example is given to show the effectiveness of the proposed design methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.