Abstract

Model predictive torque control (MPTC) is emerging as a powerful control scheme for high performance control of induction motor (IM) drives. Compared to direct torque control, MPTC is more effective and accurate in voltage vector selection by incorporating the system model directly with the finite switching states. However, for two-level inverter-fed IM drives, the sampling frequency of MPTC has to be high to achieve good performance due to the limited number of voltage vectors. Recently, the concept of duty cycle control was introduced in MPTC by inserting a null vector along with the selected active voltage vector to achieve torque ripple reduction. The active vector is first selected from conventional MPTC and then its duration is determined based on a certain principle. The cascaded processing of active vector and its duration leads to poor low-speed performance and the sampling frequency still has to be high. This paper proposes an improved MPTC with duty cycle control by optimizing the vector selection and its duration simultaneously when minimizing both torque and flux errors. As a result, better steady-state performance at both low and high speeds is achieved, even if the sampling frequency is reduced by half. The effectiveness of the proposed MPTC is verified by both simulation and experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call