Abstract

Aiming at the problem of fixed candidate voltage vector (VV) in conventional finite-control-set (FCS) model predictive torque control (MPTC) of permanent magnet synchronous motor (PMSM), fuzzy control is use to determine dynamic candidate VVs based on effects of the value and angle of applying VV on stator flux and torque. The inputs of fuzzy controller are errors of stator flux and torque and outputs are 3 candidate VVs. Simulation results show compared with conventional FCS-MPTC, the proposed strategy can decrease stator flux and torque’s ripples and calculation burden of MPTC, but it will increase average switching frequency. In order to decrease average switching frequency, zero VV is also used as candidate VV, but it will decrease dynamic torque response. Thus the method that zero VV is used only at steady state is given. Simulation results show the control performance of the system remains basically unchanged and the average switching frequency is reduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.