Abstract

Abstract Collaborative robots have the potential to simplify the working day of the future. The goal in the development of these robots is to assist human operators by handling all sorts of tasks. A common underlying problem is to move the robot’s tool center point in a desired way. In this work we consider the generation of a feasible trajectory in joint space given a reference in task space. This is done at the example of the Bionic Handling Assistant (BHA), a compliant, redundant and pneumatically driven continuum robot. The trajectory for the BHA is obtained using a model control loop (MCL) which internally realizes a nonlinear model predictive controller (NMPC). We simplify the high dimensional and nonlinear model of the BHA to a computational efficient model which still covers the major effects of the original dynamics. This results not only in a feasible trajectory but also enables the model control loop to be real-time applicable. The proposed method is validated in simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.