Abstract

Existing potential functions (PFs) utilized in autonomous vehicles mainly focus on solving the path-planning problems in some conventional driving scenarios; thus, their performance may not be satisfactory in the context of emergency obstacle avoidance. Therefore, we propose a novel model predictive path-planning controller (MPPC) combined with PFs to handle complex traffic scenarios (e.g., emergency avoidance when a sudden accident occurs). Specifically, to enhance the safety of the PFs, we developed an MPPC to handle an emergency case with a sigmoid-based safe passage embedded in the MPC constraints (SPMPC) with a specific triggering analysis algorithm on monitoring traffic emergencies. The presented PF-SPMPC algorithm was compiled in a comparative simulation study using MATLAB/Simulink and CarSim. The algorithm outperformed the latest PF-MPC approach to eliminate the severe tire oscillations and guarantee autonomous driving safety when handling the traffic emergency avoidance scenario.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.