Abstract

In order to solve the parameter dependence problem in model predictive control, an improved model predictive current control (MPCC) method based on the incremental model for surface-mounted permanent-magnet synchronous motor drives is proposed in this paper. First, the parameter sensitivity of a conventional MPCC method is analyzed, which indicates that the parameter mismatches would cause prediction current error and inaccurate delay compensation. Therefore, an incremental prediction model is introduced in this paper to eliminate the use of permanent magnetic flux linkage in a prediction model. Among the parameter of the incremental prediction model, only inductance mismatch contributes to the prediction error, since the influence of resistance mismatch on the control performance is very small. Therefore, in order to improve the antiparameter-disturbance capability of the MPCC method, an inductance disturbance controller, which includes the inductance disturbance observer and inductance extraction algorithm, is presented to update accurate inductance information for the whole control system in real time. Finally, simulation and experimental results both show that the proposed method can effectively eliminate the influence of the parameter mismatches on the control performance and reduce the parameter sensitivity of the MPCC method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call