Abstract

Hydraulic cylinders are pivotal components in various industrial, construction, and off-highway applications, where efficient actuation is crucial for reducing energy consumption, minimizing heat generation, and extending components’ lifespan. The integration of Independent Metering Control, a valve topology allowing five valves to independently control the flow, represents a significant advancement in enhancing hydraulic systems’ performance. However, the lack of a reliable and flexible control solution remains a challenge. In this paper, we present the implementation of nonlinear Model Predictive Control, using a favorable model formulation and a state-of-the-art solver(acados).We show how it can deliver close-to-optimal performance with real-time capabilities, addressing the current gap in achieving efficient control for hydraulic cylinders with Independent Metering Control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.