Abstract

This paper aims to demonstrate the practical aspects of process control theory for undergraduate students at the Department of Chemical Engineering at the University of Bahrain. Both, the ubiquitous proportional integral derivative (PID) as well as model predictive control (MPC) and their auxiliaries were designed and implemented in a real-time framework. The latter was realized through retrofitting an existing plate-and-frame heat exchanger unit that has been operated using an analog PID temperature controller. The upgraded control system consists of a personal computer (PC), low-cost interface using X-transposed-region (XTR) converter, national instruments USB 6008 data acquisition card, and LabVIEW software. LabVIEW control design and simulation modules were used to design and implement the PID and MPC controllers. The performance of the designed controllers was evaluated while controlling the outlet temperature of the retrofitted plate-and-frame heat exchanger. The distinguished feature of the MPC controller in handling input and output constraints was perceived in real-time. From a pedagogical point of view, realizing the theory of process control through practical implementation was substantial in enhancing the student’s learning and the instructor’s teaching experience

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.