Abstract

This paper presents a model predictive controlled three-level three-phase active neutral-point-clamped (ANPC) inverter for distributing the voltage stress among the semiconductor power switches as well as balancing the neutral-point voltage. The model predictive control (MPC) concept uses the discrete variables and effectively operates the ANPC inverter by avoiding any linear controller or modulation techniques. A 4.0 kW three-level three-phase ANPC inverter is developed in the MATLAB/Simulink environment to verify the effectiveness of the proposed MPC scheme. The results confirm that the proposed model predictive controlled ANPC inverter equally distributes the voltage across all the semiconductor power switches and provides lowest THD (0.99%) compared with the traditional NPC inverter. Moreover, the neutral-point voltage balancing is accurately maintained by the proposed MPC algorithm. Furthermore, this MPC concept shows the robustness capability against the parameter uncertainties of the system which is also analyzed by MATLAB/Simulink.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.