Abstract
This paper proposes a model predictive control (MPC) approach for ducted fan aerial robots using physics-informed machine learning (ML), where the task is to fully exploit the capabilities of the predictive control design with an accurate dynamic model by means of a hybrid modeling technique. For this purpose, an indigenously developed ducted fan miniature aerial vehicle with adequate flying capabilities is used. The physics-informed dynamical model is derived offline by considering the forces and moments acting on the platform. On the basis of the physics-informed model, a data-driven ML approach called adaptive sparse identification of nonlinear dynamics is utilized for model identification, estimation, and correction online. Thereafter, an MPC-based optimization problem is computed by updating the physics-informed states with the physics-informed ML model at each step, yielding an effective control performance. Closed-loop stability and recursive feasibility are ensured under sufficient conditions. Finally, a simulation study is conducted to concisely corroborate the efficacy of the presented framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.