Abstract

A model predictive control (MPC) strategy for a three-phase three-level neutral point clamped (NPC) grid-connected inverter is discussed. Conventional two-level inverters are effective when a symmetric fault occurs. But when a three-phase unbalanced fault occurs, they will generate errors and introduce delay in the power system because of the complex design or the neglected negative-sequence component of the grid. To solve this problem, a new method to control a NPC grid-connected inverter is proposed, which combines an MPC strategy with a decoupling double synchronous reference frame phase-locked loop technique. The proposed method reduces the use of PI controllers and enhances the system's response speed. Using simulations and experiments, the proposed MPC strategy for a three-level NPC grid-connected inverter is proven to be accurate and reliable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.