Abstract

Abstract Wastewater treatment is an essential process to ensure the good chemical and environmental status of natural water bodies. The energy consumption for wastewater treatment represents an important cost for water utilities. Meanwhile has the increasing fraction of renewable energy sources in the electricity market created the possibility of exploiting cheaper (and greener) electricity. This paper proposes model predictive control driven by stochastic differential equations and genetic optimization to prioritize aeration in periods with low electricity prices thereby reducing costs and empowering smart use of green electricity. This is without violation of legislation and equipment constraints. The method is tested with real plant data and electricity market prices to demonstrate efficiency and feasibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.