Abstract
Model predictive control (MPC) heavily relies on the accuracy of the system model. Nevertheless, process models naturally contain random parameters. To derive a reliable solution, it is necessary to design a stochastic MPC. This work studies the chance constrained MPC of systems described by parabolic partial differential equations (PDEs) with random parameters. Inequality constraints on time- and space-dependent state variables are defined in terms of chance constraints. Using a discretization scheme, the resulting high-dimensional chance constrained optimization problem is solved by our recently developed inner–outer approximation which renders the problem computationally amenable. The proposed MPC scheme automatically generates probability tubes significantly simplifying the derivation of feasible solutions. We demonstrate the viability and versatility of the approach through a case study of tumor hyperthermia cancer treatment control, where the randomness arises from the thermal conductivity coefficient characterizing heat flux in human tissue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.