Abstract

This paper presents new results on a neural network approach to nonlinear model predictive control. At first, a nonlinear system with unmodeled dynamics is decomposed by means of Jacobian linearization to an affine part and a higher-order unknown term. The unknown higher-order term resulted from the decomposition, together with the unmodeled dynamics of the original plant, are modeled by using a feedforward neural network via supervised learning. The optimization problem for nonlinear model predictive control is then formulated as a quadratic programming problem based on successive Jacobian linearization about varying operating points and iteratively solved by using a recurrent neural network called the simplified dual network. Simulation results are included to substantiate the effectiveness and illustrate the performance of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call