Abstract

Abstract Model predictive control (MPC) has been widely applied in industry, especially in the refining industry. As all feedback controllers require correct sensor measurements, unreliable sensors can cause the MPC controller to move the process in an erroneous manner. Data validation of sensor measurements is a prerequisite in applying advanced control, particularly multivariable control which depends on many sensors. In this paper, principal component analysis (PCA) is applied to detect, identify and reconstruct faulty sensors in a simulated FCC unit. A base PCA model is generated by perturbing the process throughout the operating region. Performance of MPC with and without data validation is compared. The same base PCA model is applied to detect and identify dynamic process faults. We demonstrate that process faults can be detected at an early stage. A progressive contribution chart is used to identify the type of faults.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.