Abstract

Generalized Disjunctive Programming (GDP) provides an alternative framework to model optimization problems with both discrete and continuous variables. The key idea behind GDP involves the use of logical disjunctions to represent discrete decisions in the continuous space, and logical propositions to denote algebraic constraints in the discrete space. Compared to traditional mixed-integer programming (MIP), the inherent logic structure in GDP yields tighter relaxations that are exploited by global branch and bound algorithms to improve solution quality. In this paper, we present a general GDP model for optimal control of hybrid systems that exhibit both discrete and continuous dynamics. Specifically, we use GDP to formulate a model predictive control (MPC) model for piecewise-affine systems with implicit switching logic. As an example, the GDP-based MPC approach is used as a supervisory control to improve energy efficiency in residential buildings with binary on/off, relay-based thermostats. A simulation study is used to demonstrate the validity of the proposed approach, and the improved solution quality compared to existing MIP-based control approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.