Abstract

Abstract This paper continues in the work from Cibulka et al. (2019) where a nonlinear vehicle model was approximated in a purely data-driven manner by a linear predictor of higher order, namely the Koopman operator. The vehicle system typically features a lot of nonlinearities such as rigid-body dynamics, coordinate system transformations and most importantly the tire. These nonlinearities are approximated in a predefined subset of the state-space by the linear Koopman operator and used for a linear Model Predictive Control (MPC) design in the high-dimension state space where the nonlinear system dynamics evolve linearly. The result is a nonlinear MPC designed by linear methodologies. It is demonstrated that the Koopman-based controller is able to recover from a very unusual state of the vehicle where all the aforementioned nonlinearities are dominant. The controller is compared with a controller based on a classic local linearization and shortcomings of this approach are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.