Abstract

The field of power electronics poses challenging control problems that cannot be treated in a complete manner using traditional modelling and controller design approaches. The main difficulty arises from the hybrid nature of these systems due to the presence of semiconductor switches that induce different modes of operation and operate with a high switching frequency. Since the control techniques traditionally employed in industry feature a significant potential for improving the performance and the controller design, the field of power electronics invites the application of advanced hybrid systems methodologies. The computational power available today and the recent theoretical advances in the control of hybrid systems allow one to tackle these problems in a novel way that improves the performance of the system, and is systematic and implementable. In this paper, this is illustrated by two examples, namely the Direct Torque Control of three-phase induction motors and the optimal control of switch-mode dc-dc converters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call