Abstract

Optimal experimental design for parameter precision attempts to maximize the information content in experimental data for a most effective identification of parametric model. With the recent developments in miniaturization and parallelization of cultivation platforms for high-throughput screening of optimal growth conditions massive amounts of informative data can be generated with few experiments. Increasing the quantity of the data means to increase the number of parameters and experimental design variables which might deteriorate the identifiability and hamper the online computation of optimal inputs. To reduce the problem complexity, in this work, we introduce an auxiliary controller at a lower level that tracks the optimal feeding strategy computed by a high-level optimizer in an online fashion. The hierarchical framework is especially interesting for the operation under constraints. The key aspect of this method are discussed together with an in silico study considering parallel glucose limited bacterial fed batch cultivations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.