Abstract

In this work, a novel model predictive control (MPC) scheme is introduced, by integrating direct and indirect neural control methodologies. The proposed approach makes use of a robust inverse radial basis function (RBF) model taking into account the applicability domain criterion, in order to provide a suitable initial starting point for the optimizer, thus helping to solve the optimization problem faster. The performance of the proposed controller is evaluated on the control of a highly nonlinear system with fast dynamics and compared with different control schemes. Results show that the proposed approach outperforms the rivaling schemes in terms of response; moreover, it solves the optimization problem in less than one sampling period, thus effectively rendering MPC-based controllers capable of handling systems with fast dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call