Abstract

In this paper, a model predictive control (MPC) based on optimal switching sequences (OSSs) for a single-phase grid-connected full-bridge neutral-point-clampled (NPC) power converter is presented. The predictive control algorithm is formulated in terms of OSSs, which was originally proposed to govern three-phase power converters. In this paper, the OSS concept is extended to control single-phase power converters. The proposed MPC algorithm belongs to the continuous control set MPC and is able to provide fixed switching frequency while handling system constraints. The proposed algorithm has been experimentally tested in an NPC power converter prototype. Experimental results show the desired fixed switching behavior in the steady-state condition and the intrinsic fast dynamic provided by MPC during transients. Furthermore, the test outcomes demonstrate the robustness of the proposed controller under large system parameter deviations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.