Abstract

Current Mode Control (CMC) is the standard approach to regulate DC-DC power converters in high performance applications, allowing to obtain a faster time-response and better closed-loop stability if compared to Voltage Mode Control (VMC). In the last decade, several algorithms have been proposed to improve standard CMC, most of them requiring to replace the original controller. However, it is common to have either analog or embedded CMC controllers which cannot be replaced easily in commercial power converters. Inspired by very recent results in the topic, this paper proposes a Model Predictive Control (MPC) external loop aimed at optimally modifying the set-point of a CMC loop to improve converter performance. The proposed configuration is directly applicable to any pre-compensated converter as it does not require changes on the already-in-place controller. Moreover, by leveraging a multi-rate implementation, the benefits of MPC are introduced in power conversion without affecting much the computational cost of the over-all control system, contrary to what would happen for a direct MPC implementation. Simulation and experimental results on a synchronous DC-DC buck converter, controlled by a standard CMC algorithm, confirm the benefits of the approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.