Abstract

In this work, we propose a tube-based MPC scheme for state- and input-constrained linear systems subject to dynamic uncertainties characterized by dynamic integral quadratic constraints (IQCs). In particular, we extend the framework of $\rho$-hard IQCs for exponential stability analysis to external inputs. This result yields that the error between the true uncertain system and the nominal prediction model is bounded by an exponentially stable scalar system. In the proposed tube-based MPC scheme, the state of this error bounding system is predicted along with the nominal model and used as a scaling parameter for the tube size. We prove that this method achieves robust constraint satisfaction and input-to-state stability despite dynamic uncertainties and additive bounded disturbances. A numerical example demonstrates the reduced conservatism of this IQC approach compared to state-of-the-art robust MPC approaches for dynamic uncertainties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.