Abstract

The Attainable Set Model Predictive Control scheme is discussed and shown to meet the needed system behavioral properties while satisfying real-time requirements underlying the control of Autonomous Underwater Vehicle formations, including the strict on-board resource constraints. More specifically, the proposed approach targets the on-line computational complexity and relies on taking advantage of the control problem time invariant elements, in order to replace, as much as possible, on-line by off-line computation, while guaranteeing asymptotic stability, and promoting the best trade-off between feedback control near optimality, and robustness to perturbations (due to disturbances, and uncertainties), and adaptivity to the environment variability. The data computed off-line is stored onboard in look-up tables, and recruited and adapted on-line with small computation effort according to the real-time context specified by communicated or sensed data. This scheme is particularly important to an increasing range of applications exhibiting severe real-time constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.