Abstract

Due to high penetration of renewable generation in power systems, and the need to provide the interface between distributed energy resources, the split-source inverter (SSI) provides both the boosting and the conversion capabilities in one single-stage. Also the need for converter-based artificial inertia has become more important. In this paper a model-predictive control (MPC) based on virtual synchronous generator (VSG) algorithm for a parallel-connected three-phase SSI is proposed for conceiving regulation of local voltage and realizing power-sharing of an islanded AC microgrid (MG). A virtual synchronous generator (VSG) is deployed to ensure active-power-sharing and provide inertia-emulation and hence reducing the rate of change of frequency (RoCoF) that results from sudden load change. To accomplish a simple control construction, quick dynamic performance, high stability, and enhanced current limitation, a finite-set MPC (FS-MPC) is used. The analysis and modeling of the proposed technique are presented in detail. A simulation model is used to investigate the proposed system performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.