Abstract

Purpose – The purpose of this paper is to propose a new type of predictive fuzzy controller. The desired nonlinear system behavior is described by a set of Takagi-Sugeno (T-S) model. However, due to the complexity of the real processes, obtaining a high quality control with a short settle time, a periodical step response and zero steady-state error is often a difficult task. Indeed, conventional model predictive control (MPC) attempts to minimize a quadratic cost over an extended control horizon. Then, the MPC is insufficient to adapt to changes in system dynamics which have characteristics of complex constraints. In addition, it is shown that the clustering algorithm is sensitive to random initialization and may affect the quality of obtaining predictive fuzzy controller. In order to overcome these problems, chaos particle swarm optimization (CPSO) is used to perform model predictive controller for nonlinear process with constraints. The practicality and effectiveness of the identification and control scheme is demonstrated by simulation results involving simulations of a continuous stirred-tank reactor. Design/methodology/approach – A new type of predictive fuzzy controller. The proposed algorithm based on CPSO is used to perform model predictive controller for nonlinear process with constraints. Findings – The results obtained using this the approach were comparable with other modeling approaches reported in the literature. The proposed control scheme has been show favorable results either in the absence or in the presence of disturbance compared with the other techniques. It confirms the usefulness and robustness of the proposed controller. Originality/value – This paper presents an intelligent model predictive controller MPC based on CPSO (MPC-CPSO) for T-S fuzzy modeling with constraints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call