Abstract

There have been extensive research works going on electric mobility but most of these work and the existing electric mobility systems are battery-based DC systems. In some applications of electric mobility like traction and advanced technologies like electromagnetic induction charging, AC fed systems are employed due to the innate qualities of AC power transmission. Almost all the electric mobility systems we use are AC induction or permanent magnet machines. The conventional electric mobility systems including traction having AC as their energy source use two-stage conversion i.e. A fixed AC is converted to a fixed or variable DC link using a rectifier and finally, an inverter provides a variable AC in terms of frequency and magnitude according to the control algorithm. The two-stage conversion has its pros and cons but Matrix Converter (MC) will be a suitable and efficient alternative for AC fed AC motor drives. In the case of traction and other electric mobility applications, the load torque demand plays a significant role. The predictive control technique provides a suitable solution for these kinds of special drive applications due to their selective parameter control ability. Implementation of predictive control using a matrix converter is more effective than the conventional inverter fed drives, owing to the increased viability of matrix converter switching configurations. This paper discusses the mathematical implementation and comparison of Predictive Current Control (PCC) and Predictive Torque Control (PTC) with and without weighing factor for AC fed electric mobility applications. The efficacy of both the model predictive control techniques in concern of execution time, steady-state, transient, and dynamic conditions are analysed and validated along with the influence of diverse control variables in the cost function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call