Abstract

The model predictive control (MPC) framework, a very popular controller design method in the process industry, is extended to transfer coordination in railway systems. In fact, the proposed approach can also be used for other systems with both hard and soft synchronization constraints, such as logistic operations. The main aim of the control is to optimally recover from delays by breaking connections (at a cost). In general, the MPC control design problem for railway systems leads to a nonlinear, nonconvex optimization problem. Computing an optimal MPC strategy using an extended linear complementarity problem is demonstrated. Also presented is an extension with an extra degree of freedom to recover from delays by letting some trains run faster than usual (again at a cost). The resulting extended MPC railway problem can also be solved using an extended linear complementarity problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.