Abstract

This paper considers an application of model predictive control to automotive air conditioning (A/C) system in future connected and automated vehicles (CAVs) with battery electric or hybrid electric powertrains. A control-oriented prediction model for A/C system is proposed, identified, and validated against a higher fidelity simulation model (CoolSim). Based on the developed prediction model, a nonlinear model predictive control (NMPC) problem is formulated and solved online to minimize the energy consumption of the A/C system. Simulation results illustrate the desirable characteristics of the proposed NMPC solution such as being able to enforce physical constraints of the A/C system and maintain cabin temperature within a specified range. Moreover, it is shown that by utilizing the vehicle speed preview and through coordinated adjustment of the cabin temperature constraints, energy efficiency improvements of up to 9% can be achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.