Abstract

This paper considers an application of model predictive control to automotive air conditioning (A/C) system in future connected and automated vehicles (CAVs) with battery electric or hybrid electric powertrains. A control-oriented prediction model for A/C system is proposed, identified, and validated against a higher fidelity simulation model (CoolSim). Based on the developed prediction model, a nonlinear model predictive control (NMPC) problem is formulated and solved online to minimize the energy consumption of the A/C system. Simulation results illustrate the desirable characteristics of the proposed NMPC solution such as being able to enforce physical constraints of the A/C system and maintain cabin temperature within a specified range. Moreover, it is shown that by utilizing the vehicle speed preview and through coordinated adjustment of the cabin temperature constraints, energy efficiency improvements of up to 9% can be achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call