Abstract

A new elastoplastic model is presented for predicting the stress-strain response of asphalt concrete under cyclic loading. The model utilizes multiyield surfaces and isotropic hardening. Rowe's stress dilatancy theory is used to obtain the relationship between the permanent volumetric and vertical strains as well as the hardening law for the changes in the sizes of the plastic moduli caused by cyclic loading. These relationships considerably simplify the task of predicting the plastic deformation under cyclic loading of both triaxial compression and extension tests. A complete description of the plastic deformation of asphalt concrete under cyclic loading is treated, including the elastic, viscoelastic, and plastic components as well as the relationship between rutting and cracking. A computer program, called Rutting in Asphalt Concrete (RUT), determines the plastic deformation under cyclic loading. Good agreement exists between the model predictions and experimental data that include data published by other researchers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.