Abstract

Fluconazole has been associated with higher mortality compared with the echinocandins in patients treated for invasive candida infections. Underexposure from current fluconazole dosing regimens may contribute to these worse outcomes, so alternative dosing strategies require study. The objective of this study was to evaluate fluconazole drug exposure in critically ill patients comparing a novel model-optimized dose selection method with established approaches over a standard 14-day (336-h) treatment course. Target attainment was evaluated in a representative population of 1,000 critically ill adult patients for (i) guideline dosing (800-mg loading and 400-mg maintenance dosing adjusted to renal function), (ii) guideline dosing followed by therapeutic drug monitoring (TDM)-guided dose adjustment, and (iii) model-optimized dose selection based on patient factors (without TDM). Assuming a MIC of 2 mg/liter, free fluconazole 24-h area under the curve (fAUC24) targets of ≥200 mg · h/liter and <800 mg · h/liter were used for assessment of target attainment. Guideline dosing resulted in underexposure in 21% of patients at 48 h and in 23% of patients at 336 h. The TDM-guided strategy did not influence 0- to 48-h target attainment due to inherent procedural delays but resulted in 37% of patients being underexposed at 336 h. Model-optimized dosing resulted in ≥98% of patients meeting efficacy targets throughout the treatment course, while resulting in less overexposure compared with guideline dosing (7% versus 14%) at 336 h. Model-optimized dose selection enables fluconazole dose individualization in critical illness from the outset of therapy and should enable reevaluation of the comparative effectiveness of this drug in patients with severe fungal infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call