Abstract

Monte Carlo simulations on a two-dimensional lattice of magnetic dipoles have been performed to investigate the magnetic reversal by thermal activation in rare-earth-transition-metal (RE-TM) alloys. Three mechanisms of magnetization reversal were observed: nucleation dominated growth, nucleation followed by the growth of magnetic domains containing no seeds of unreversed magnetization, and nucleation followed by dendritic domain growth by successive branching in the motion of the domain walls. The domain structures are not fractal; however, the fractal dimension of the domain wall was found to be a good measure of the jaggedness of the domain boundary surface during the growth process. The effects of the demagnetizing field on the hysteretic and time-dependent properties of the thin films were studied and some limitations in the application of the Fatuzzo model on magneto-optic media are identified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call