Abstract

The relative content of each phase at room temperature and the ratio of transformable phase at high temperature of zirconia solid electrolyte are important to its thermal shock resistance and electrical conductivity. The match of thermal shock resistance and electrical conductivity plays an important role in measuring the lower oxygen activity in molten steel. A linear model between the thermal shock resistance and the phase composition at room temperature is proposed based on this concept, another evolved relationship between the pyroconductivity and the elevated temperature transformation is also proposed. These models provide theoretical reference for the preparation of the high precision oxygen sensor for measuring the lower partial pressure of oxygen in molten steel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.