Abstract

A model of the formation and growth of gas-filled pores in the cores of absorbing elements under neutron irradiation is described. The model is based on a definite similarity between the mechanisms of radiation damage in boron carbide and oxide fuel. For boron carbide, the key mechanism is radiation-stimulated coalescence of helium bubbles, which gives rise to the much larger swelling of boron carbide as compared with nuclear fuel. Regimes of the coalescence of helium bubbles as a function of the irradiation intensity, neutron spectrum, and radial position are investigated. It is shown that the model describes qualitatively well the basic development of gas-filled porosity under irradiation in fast and thermal reactors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.