Abstract
We investigate the physical properties of the Ba(1-x)K(x)BiO(3) compounds with a focus on the optical properties. Results from the simple Holstein model, describing a single band coupled to an oxygen breathing mode with parameters derived from first principles calculations, are in excellent agreement with a broad range of experimental information. It accounts for an insulating parent compound at x=0, with a direct (optical) and an indirect gap, and a metal insulator transition around x=0.38. Strong electron-phonon coupling leads to spectral weight redistribution over a frequency scale much larger than the characteristic phonon frequency and to strongly anharmonic phonons. We find that the metallic phase in the vicinity of phase boundary is close to the polaronic regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.