Abstract

A theoretical framework and dynamical model for description of the natural optical activity and Faraday rotation in an individual chiral single-walled carbon nanotube in the highly nonlinear coherent regime is proposed. The model is based on a discrete-level representation of the optically active states near the band edge. Chirality is modelled by a system Hamiltonian corresponding to energy-level configurations, specific for each handedness, that are mirror reflections of each other. An axial magnetic field is introduced through the Aharonov-Bohm and Zeeman energy-level shifts.The time evolution of the quantum system is studied using the coherent vector Maxwell-pseudospin equations. Giant natural and magneto-optical gyrotropy, exceeding the one of the artificial photonic metamaterials, is numerically demonstrated for a single (5,4) carbon nanotube and an estimate of the magnitude of the natural circular dichroism and specific optical rotatory power is obtained. The model provides a framework for investigation of chirality and magnetic field dependence of the ultrafast nonlinear optical response of a single carbon nanotube.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.