Abstract
A two-dimensional computer model is developed to study the evolution of texture during the growth of layered mineral aggregates. The program computes the number, size and orientation (texture) of crystals forming the outer surface of the aggregate, as well as the evolution as a function of time. In particular, the analysis focuses on the influence of growth parameters such as the anisotropy of the growing crystal forms, the relative growth rate of the crystal faces, the nucleation density on the substrate surface, the flow direction of the mineralizing solution and the shape of the substrate. The simulation provides an explanation for the development of a preferential orientation in a polycrystalline material growing from randomly oriented nuclei. The calculated distribution of crystal orientations, and its evolution with time, is in agreement with textures observed in synthetic and natural polycrystalline aggregates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.