Abstract

Abstract Agricultural crops can be either a source or a sink of ammonia (NH3). Most NH3 exchange models developed so far do not account for the plants nitrogen (N) metabolism and use prescribed compensation points. We present here a leaf-scale simplified NH3 stomatal compensation point model related to the plants N and carbon (C) metabolisms, for C3 plants. Five compartments are considered: xylem, cytoplasm, apoplasm, vacuole and sub-stomatal cavity. The main processes accounted for are the transport of ammonium (NH4+), NH3 and nitrate (NO3−) between the different compartments, NH4+ production through photorespiration and NO3− reduction, NH4+ assimilation, chemical and thermodynamic equilibriums in all the compartments, and stomatal transfer of NH3. The simulated compensation point is sensitive to paramaters related to the apoplastic compartment: pH, volume and active transport rate. Determining factors are leaf temperature, stomatal conductance and NH4+ flux to the leaf. Atmospheric NH3 concentration seem to have very little effect on the compensation point in conditions of high N fertilization. Comparison of model outputs to experimental results show that the model underestimates the NH3 compensation point for high N fertilization and that a better parametrisation of sensitive parameters especially active trasport rate of NH4+ may be required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call