Abstract

The paper describes the main ways of organizing modern satellite communication systems and the methods of synchronization and transmission of service information used in them, the frame synchronization mechanism from the view point of noise immunity. Based on the analysis, a block diagram of a simulation model is proposed for studying the influence of unintentional interference on the channels of modern satellite communication systems. The proposed model of the impact of non-stationary interference on a satellite communication channel takes into account the effect of interference on symbolic, frame synchronization, mechanisms for extracting frame boundaries, as well as the effect of modern error correction codes. The model allows evaluating the impact of non-stationary interference on both the information and the service side of the frame of modern systems of broadband satellite communications. As an indicator of the noise immunity of a satellite communication channel, there was used probability of frame loss, i.e. frame skipping due to a violation in the frame synchronization system, incorrect allocation of frame boundaries, or the presence of errors in the frame that were not repaired by corrective codes. Using this model, we studied the effect of non-stationary interference of various durations on the information and service parts of the frame, compared the results of the impact of non-stationary interferences of various durations with the effect of white Gaussian noise. It is shown that non-stationary interference, which are short noise pulses that do not affect the information part of the frame due to reparation by correction codes, can significantly reduce the reception quality due to disruption of frame synchronization and distortion of service information about the signal-code structure and frame length.

Highlights

  • The paper describes the main ways of organizing modern satellite communication systems and the methods of synchronization and transmission of service information used in them, the frame synchronization mechanism from the view point of noise immunity

  • The proposed model of the impact of non-stationary interference on a satellite communication channel takes into account the effect of interference on symbolic, frame synchronization, mechanisms for extracting frame boundaries, as well as the effect of modern error correction codes

  • As an indicator of the noise immunity of a satellite communication channel, there was used probability of frame loss, i.e. frame skipping due to a violation in the frame synchronization system, incorrect allocation of frame boundaries, or the presence of errors in the frame that were not repaired by corrective codes

Read more

Summary

Introduction

Предлагаемая модель воздействия нестационарных помех на канал спутниковой связи учитывает влияние помех на символьную и кадровую синхронизации, механизмы выделения границ кадра, а также действие современных кодов исправления ошибок. Модель позволяет оценить влияние нестационарных помех как на информационную, так и на служебную части кадра современных систем широкополосной спутниковой связи. Процесс влияния импульсных и структурных помех на процессы синхронизации при передаче данных описан в [11, 12], однако влияние помех на служебную часть кадра современных систем широкополосной спутниковой связи не исследовалось.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call