Abstract

Abstract Residual stresses in hot-rolled strips are of practical importance when the laser cutting of these strip is applied. The factors influencing the residual stresses include the non uniform distribution of elastic-plastic deformations, phase transformation occurring during cooling and stress relaxation during rolling and cooling. The latter factor, despite its significant effect on the residual stress, is scarcely considered in the scientific literature. The goal of the present study was development of a model of residual stresses in hot-rolled strips based on the elastic-plastic material model, taking into account the stress relaxation. Residual stresses in hot-rolled strips were evaluated using the FEM model for cooling in the laminar cooling line and in the coil. Relaxation of thermal stresses was considered based on the creep theory. Coefficients of elastic-plastic material model and of the creep model for steels S235 and S355 were obtained from the experiments performed on the Gleeble 3800 simulator for the temperatures 35-1100°C. Experiments composed small tensile deformations of the sample (0.01-0.02) and subsequent shutter speed without removing the load. Model of the thermal deformation during cooling was obtained on the basis of the dilatometric tests at cooling rates of 0.057°C/s to 60°C/s. Physical simulations of the cooling process were performed to validate the model. Samples were fixed in the simulator Gleeble 3800, then heated to the temperature of 1200°C and cooled to the room temperature at a rate of 1-50°C/s. Changes of stresses were recorded. Good agreement between calculated and experimental values of stresses was observed. However, due to neglecting the effect of stress relaxation the stress at high temperatures was overestimated. Due to the change of their stress sign during the unloading process the resulting residual stresses were underestimated. Simulation of residual stresses in rolling and cooling were performed on the basis of the developed model. It was shown that the effect of stress relaxation and phase transformations on the distribution of residual stresses in strips is essential and neglecting these factors could lead to an underestimation of residual stresses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call