Abstract

We formulate a model of quark–antiquark interaction related to the limit transition to the light-front Hamiltonian in quantum chromodynamics. As ultraviolet regularization, we use a lattice in the space of transverse coordinates, and we additionally introduce a longitudinal light-front coordinate cutoff and also corresponding periodic boundary conditions. We regard the zero mode with respect to this coordinate as an independent dynamical variable. The state space of the model is limited to a quark and an antiquark that interact only via the zero mode of the gluon field on the light front. In this framework, we obtain a discrete mass spectrum of bound states. This spectrum is determined by an equation that with respect to the longitudinal coordinate turns out to be analogous to the’ t Hooft equation in two-dimensional quantum chromodynamics. The equation also contains a quark–antiquark potential that ensures confinement in the transverse space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.